
University of Greenwich
nearmejobs.eu
Overview
The need to quickly generate new diagnostic tools and therapies in the battle against viral diseases has been highlighted recently by the continuing global pandemic caused by the SARS-CoV-2 virus. One approach has been the generation of monoclonal antibodies (mAb), generally targeting the spike protein of this novel coronavirus, for use in both diagnostic assays and putative therapies.
In this project, we seek to prepare abiotic “plastic antibodies” targeting a range of virus types, e.g. SARS-CoV-2 and human influenza, using a technique called molecular imprinting of polymers.
Molecularly imprinted polymers (MIPs) are artificial receptors created by combining principles of polymer chemistry with those of molecular recognition (supramolecular chemistry) [1]. The MIP is constructed from monomeric building blocks, using a suitable template to guide the formation of specific binding regions in the polymer structure. The properties of MIPs have been shown to mimic those of their biological counterparts, but MIPs offer a number of advantages. For example, they are very robust and reusable, do not require special storage conditions and are far less expensive to produce.
The goals of the project are to produce anti-viral MIP nanomaterials and to apply them first in diagnostic assays and, ultimately, in therapeutic models.
This ambitious project will be suited to those with a background in materials/polymer/analytical chemistry who wish to work at the chemistry/biological science interface.
To help us track our recruitment effort, please indicate in your email – cover/motivation letter where (nearmejobs.eu) you saw this posting.