Improved design and damage tolerance of lightweight composite sandwich structures

University of Bristol

nearmejobs.eu

The key design drivers for the adoption of sandwich structures include high specific stiffness and strength, damping, thermal insulation and excellent fatigue properties by adopting particular constituents and tailored geometric layouts. The PhD project will:

  • Devise a multi-scale modelling framework for the prediction of the load response and progressive damage and failure behaviour of CFRP sandwich structures.
  • Provide a high-fidelity experimental methodology combining imaging approaches applied to data-rich analysis of the load response and progressive damage and failure behaviour of CFRP sandwich structures.
  • Enable novel design concepts for damage tolerant CFRP sandwich structures.
  • Stimulate your interest in composites and mechanical design to unlock doors for the next-generation of analysis/design procedures and efficient lightweight engineering structures to facilitate Net-Zero sustainability goals.

Candidate Requirements

Applicants must hold/achieve a minimum a 2:1 MEng or merit at Masters level or equivalent in engineering, physics or chemistry. Applicants without a master’s qualification may be considered on an exceptional basis, provided they hold a first-class undergraduate degree. Please note, acceptance will also depend on evidence of readiness to pursue a research degree and performance at interview.

To apply please submit a personal statement, outlining your experience and why you are interested in PhD/EngD project, your CV and transcript of results to https://www.bristol.ac.uk/study/postgraduate/apply/. Please do not submit a project description; this is unnecessary as the project is already defined. Please select PhD in Advanced Composites and enter Professor Janice Barton the Director of the CDT as the 2nd supervisor ()

To help us track our recruitment effort, please indicate in your email – cover/motivation letter where (nearmejobs.eu) you saw this posting.

Job Location